OCTOGON MATHEMATICAL MAGAZINE
Vol. 29, No.1, April 2021, pp 24-50

Print: ISSN 1222-5657, Online: ISSN 2248-1893
http://www.uni-miskolc.hu/~matsefi/Octogon/

24

Variations on theme of Nested Radicals
(Inequalities, Recurrences, Boundness and

Limits )
Arkady M. Alt 3

ABSTRACT. By anology with continued fraction we will consider for given
sequences (py) , (an), (by) finite and infinite ”additive” and ”multiplicative” Radical
Constructions:

(SF)
p(/al +b p(/ag + by ”i/ag + oo+ by Prtyfang
(SI)
p&/al + by p(/ag + by p(’/ag + ..+ by ”"’r{/m
(PF)
p(/al p(/a2 ”ﬁ/ ag Pry/any1,
(PI)

P
(/al pi/az ”i/ag Prtl/Gng1 + ...

which named, respectively, finite and infinite nested (continued) radicals (additive
and multiplicative). As usual, the basis for the variations will be concrete problems.

Part 1. Inequalities and boundedness.

Problem1.

a) Prove that r, := \/2 34V ...a/n+1<3,neN;
b) Prove that r, := \/2\3/3\4/4\5/....{‘/5 <3neN (rm=v1i=1).

3Received: 11.12.2018
2010 Mathematics Subject Classification. 26D15.
Key words and phrases. Inequalities.
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Solution. a)
Solution 1. Since

1 1 1 1 n n— n— n—
T =22374% . (n+1)T = 12 =227 .82 2" (4 )?

then, applying AM-GM Inequality we obtain

=l on=24 49241
Since 2"~1 427724 424 1=9"_1,

n—1 n—2
,,,2" . <22n-1+32n—2_'_+n21+(n+1)20)2 +2 +...4+2+1
n = .

2:2" 143224 4n.2l4(n+1)-2=3.2"_p_2
then

mo B Py N e g0y
r2 g(%) :<3—n ) = T §0% < 8

Solution 2. Since

and for any natural k holds inequality

In(k+1)<2ln(k+2)—In(k+3) <

(k+1)(k+3) < (k+2)? < 0<1

then
—~In(k+1) ~2In(k+2)—In(k+3)
Inr, = Z ok < Z ok =
k=1 k=1
“ (In(k+2) In (k + 3)
i= Z ok—1 ok 5
k=1
_In(1+2) In(n+3) In(n+ 3)
G T o —ln3—T<ln3 = r, < 3.
b)

Solution 1.  Applying Weighted AM-GM Inequality to the numbers 2,3,...,n
with weights
1 1
W1 = 57, W2 =

21 3!

we obtain
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1 1 1
1 1\ grtgrttoy
rn=22.39 .. .pnl < | 2 3 n =
" 1 1 1
2'+§+...+n'
1 1 1
1 1 1 gitgrt-toy
: ﬁ+5+m+m_n
= 1 I <
§T+§+"+_l
1 1 1
+§+
1 1
< +1+1+ +1 <e
2! 3!
Solution 2. Since lnn<n—1,n22then
1 _In2  In3 Inn 1 2 n—-1_
A N R R e e

“a)t@a) - (Ghma) -

1
:1_E<1 = r,<e<3.

Remark 1. Better upper bound for r,.
Using more precise inequality Inn < n — 1,n > 2 we obtain

e ln2+ln3+ +lnn In2 In4 In4 1 1 1 1
nrp=—+—+.+—< —4——4 "4 ([ _ _ = | — = =
21 3! n! 2 6 24 4! 5l (n—=1)! nl

In2 In2 In2 ] 1 111n2+1
2 3 12 4! ! 12 24"

Since

i - 2
D —l—2 <1n2<=>2<ln < 1< In4

then r,, < 2.
The same upper bound for r,, gives

1
Solution 3. Since n! > 2. 37~ 2 n>2and maécnn = 33 then for & > 3 holds
ne

21 A (k—ll)! = 1 1 1
k¥ = (kk) < 33(k-1)! < 333k
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and, therefore,

Lo 1 A .
Tp=221.331 ... .00l <22.323....323"2 <

131 1 1 &y
\/2 .33ttt te o \/2 -3z =vViz2<2

Remark 2. As generalization of considered above Problem 1 we will find upper

bounds for
T (k) == l\c/k " (k+1)...¥/n
and 7 (k) := {/k Ik +1) .../ n.

Lemma 1. For any natural numbers n > 3 and p holds following inequalities:

1))
i 1
nn? > (n+1)m+D?
(ID)
1
N > (n 4 p) OGP

Proof. (Using Math Induction by p € N) Inequality (I)

1

1 1
1. For p = 1 we already have nn > (n+ 1)n+1 .
1

1
2. For any p € N assuming nn? > (n + 1) (®**1)” we obtain

=1 L
nnP+1 — nnp

Inequality (II).

1

3=
3|~

1 1
1. For p = 1 we already have nn > (n+ 1)n+1
2. For any p € N using inequality (I) and assuming that inequality

1
'n,;zll7 = (n + p) (n+1)(n+2)...(n+p)

holds for any n > 3 and we obtain

—1 1
nnPtl — nnp

3=
=

n

1 = 1
> ((n n 1)—<n+1>1’> > (((n F1+ p)(("+1)+1)'"("+1+”)>

=1 1\ n+l =% "l ‘3
> ((n+l)("+1)”> > ((n+1)(”+1)”> = (n+ TR

>
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1
1\ mpT 1
> ((n+ 1+p) (n+2)...(n+1+p)> + = (n+ (p+ 1)) FDOF2) (n+p+1)

Applying inequality (II) for (n,p) = (k,p), where p=1,2,...,.n —k

to
Ty (R ii= ’{/k (k+1)..Yn3<k<n
we obtain

1 1
o (k) = k% (k4 1)REY Lo RRED L =

1
i (58 k

1 1
= k% . ((k + 1)k+T - (k +2) R+D(*R+2) .. n(k+1)...n.) <

Eal

1 1 1
Tzt -t merFT < kE-1.

x|

% I Y 1
< k .<k;k.kk2.m.k.kn—_k> =k
1
So, 7y (k) < k=1 and since 7, (k) 1 (n) then we have
1
r(k) = lim r, (k) < kk-1.
n—oo

Problem 2.
a) For any real a > 0 determine upper bound for

anz\/a—i- \/a—f— a+ ...+ v/a(n-roots), n € N;
\/n+\/n—1+\/n—2+...+\/f

b) Let a, := Tn ,n € N.
Prove that sequence (a,)y is bounded.
Solution.

a) Sequence (ay)y can be defined recursively as follows

Gnt+1 =+v/a+an,n € Nand a; = /a.

In supposition that positive number M is upper bound for (a,)y and
since then

any1 =vVa+a, <Va+ M

we claim

Va+M <M < a+M <M? << M?>-M-a>0

M> 1+\/;1a+1’
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Let
1++v4da+1
M=—"
2
Since

<M = a<

1++v4da+1
i5 2a+ ity

Vda < Via+1+1 obviously holds and for any n € N, assumption a,, < M
implies an41 = \a+a, <Va+M <M, then by Math Induction a,, < M for
any natural n.

Remark. Ifa =2 then ani1 =2+ an,n € N where
a1 =2 = 2cos Z and, therefore,

as ,/2+2cos2—2—2c0323

T
For any n € N assuming a,, = 2 cos we obtain

an+1 =V2+a, = 1/2+2003 2n+2.

Thus, by Math Induction we have
T
n = 2 cos W <2

for any n e N.

Vvida+1
Formula M = 1+++ for a = 2 gives us M = 2 as well.
b) Since
\/n+\/n—1+\/n—2+..‘+\/1>\/ﬁ
then a,, > 1.

Note that for any n € N holds inequality an41 < /1 + a, .
Indeed,

n+l4+vVn+..+v1 PR e
an+1=\/ \/’l’L+ n—14.. +\/_<
vn+1 n+1

1
< 1+ﬁ n—1+yn-2+.4+vVi=v1I+a,

For any n € N\ {1} repeatedly applying this inequality we obtain
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an<\/1+an_1<\/1—|—\/1+an_2<...<\/1+\/1+1/1+...+\/a:
=\/1+\/1+\/1+...+f1

(n-roots) and,since

1+vEIIFT 1
\/1+\/1+\/1+...+\/I§ 2 : ok +2‘/_5

1+v5

2
for any n € N.

then a,, <

Remark. Since

\/n+\/n—1+\/n—2+...+\/f<\/ﬁ+1

vn+1
vn

for any n € N ( can be proved by Math Induction) then a,, < < 2, for any

n € N and, therefore, (a,)y is bounded from above.

Problem 3. For any natural n > 2 prove inequality

\J2+ \3/3+ </4+ \/5+..+ ¥n<2

Solution. For any natural n > 2 let 7o (n) = {/n and

rk(n) = "/n—k+ri_1 (n),

where 0 <k € {1,2,..,n—1}. Then

ri(n)="Vn-1+r(0)= "Yn-1+¥n,r2(n)= "Y/n—2+r (n) =
= "_\2/71—2—}- "Nn—1+ Yn, ., (n) =
= ”_i/n—kqt "“'“*1\)/(n—(k+1))+...+ "n—1+ /n,
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\[;\3/3+ '(/4+{‘/5+...+ ¥Yn=rp_s(n)

and we have to prove that r, 5 (n) < 2.
For further we need the following

Lemma 2. For any n > 3 and real h > 0 holds inequality

Vn+h>"Vn+1+h.

Proof. We have

0%+h2"V%+1+h¢:(n+mﬁlzm+l+mn¢:

el <n+1+h>”

n+h

where latter inequality follows from

+h>3>e> 1+1 n> 1+ : . it s 3 4
n — —_— = —) .

n n+h n+h
Remark. The Lemma can be proved by Math Induction without reference to e.
Note that

Yn+h> "Vntl+h ap > by,

where
an == (n+ h)n+1 ,
bp:=(n+1+h)".

1. Base of Math Induction.
al—bl:(3+h)4—(4+h)3:(3+h)4—(3+h)3-3(3+h)2—3(3+h)—1:
=B+m*(B+h) -1)=3@+h)’-3B+h) —1=
=(B+h)?((3+h)(2+h)—3)-3(B+h) —1=
=(+h)* (h* +5h+3) —=3(3+h)~1 >33+h)>—3(3+h)—1=

=3B+h)Q2+h)—-1>18-1=17.
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2. Auxiliary inequality. For any n € N holds inequality

An+1 bn+1
g L
an bn

— an+1bn > anbn+1.

Indeed,

n+2

an+1bn > a77.bn+1 — (n + 1 + h) ‘ ('n + 1 + h)n e

>n+h)" (n+2+n)" =

(n+1 )" > (w2 r2m+h) =
(m+h+1)2>@n+h)’+2(n+h) < 1>0.

3. Step of Math Induction. For any natural n > 3 assuming a, > b, and using
an+l bn+1

inequality > we obtain
n n
An41 bn+1
An+4+1 = Qn - > bn 2 = bn+1. |
an b

Corollary. For any n > 3 and real h > 0 holds inequality
V3+h>Un+h.

Now we will prove that for any 0 < k < n — 3 holds inequality

T (k) < §/3+ §/37+ V3+..+73

(k + 1 roots), using Math. Induction by k.

1.If £ = 0 then
Yn < V3.

2.For any k such that 1 < k <n — 3 holds

re_1 (n) < </3+\3/3+ V3+..+V3

(k roots) then, applying Corollary to h = rx_1 (n), we obtain




Variations on theme of Nested Radicals (Inequalities, Recurrences, Boundness and

Limits ) 33

3 3 )
mh(n) = "/n—k+re(n) < \J3—|— \/?:\3/34— \3/3—1- e+ V3 +1 roots)

Let a; = V3 and a,41 = ¥3 1 a,, ;n €N then a, <2 for any n € N.
Indeed, V/3 < 2 and from supposition a,, < 2 we obtain

ny1 = V3+a, < V3+2=V5< 2.

Hence, 7 (n)<2forany0<k<n-—3 and, therefore,

Tn—2(n) =2+ 7p_3(n) <V2+2=2.

For establishing upper bounds of nested radicals represented in the next problem
will be useful

Lemma 3. For any positive real a,b and any natural p,n and k € {0, 1,2, ..., n} let

Ry (n) := (/a-bf’""“ + Al -pErRE L Va - br",

(k41 radicals)
Then

Ri(n) =b7" """ {/a +{/a+..+ ¥a

(k4 1 radicals).

Proof. (Math Induction by k € {0,1,2, ..., n}).
First of all note that Ry (n) can be defined recursively as follows:

Ry (n) :=Va-b", Ry, (n) = (/a 6P 4 Ry (n),k € {1,2,...,n}
Base of M.I.

Ro(n) = ¥a " = """ /a, R, (n) = (/a b7 + Ry (n) = {g/a P Yo bt =

=P a_bpn—l ‘I—bpn_l%:bpn_z C/a+ {75

Step of Math Induction. For any k € {1,2,...,n} assuming

Rk_l(n):b”n—k(/a-k {a+..+ ¥a

(k radicals) we obtain



34 Arkady M. Alt

Ry (n) = {’/a-b”"h'c + Ri—1(n) = {)/wbp"'k —!—bp"_k{,/a—i- {a+..+¢a=

(k + 1 radicals).

Corollary 1. Let (a,)y be sequence of non negative real numbers such that for
some positive real a and b holds inequality a,, < a-b2",n € N.
Then for any n € N,k € {0,1,2,...,n} holds inequality

(1) \/an_k + A Gkt + oo + AR < b2"_k‘1\/a+ Va+..+va<M. g2

Proof. In particular for p =2 from Lemmas 3 and 4 follows

\/%_;c + /i1 + ... + Va, < \/a B 4 a b 4 Ve b2 =

noket / — 1+I¥4
B " \/a+ a+...+va< M-b? kl,whereM:%

(see solution to Problem 2a).

Corollary 2. (Criteria of convergence \/al + Va2 + ...+ /ay). Let (an)y

be sequence of non negative real numbers and let

Py = \/al +1/az2 + ... + /a,.

Then sequence (r,)y is bounded from above iff a,, < a - b*",neN for some
positive a, b.

Proof. Let M be some upper bound for (rn)y ,that is 7, < M for any n € N and we
obtain

al/?" = \/0+\/0+...+1/0+,/an < \/a1+,/a2+...+,/an§M.

Hence, a, < a-b*", wherea =1 and b= M.
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Ifa, <a-v*",neN for some positive a, b then by corollary 1 for k = n — 1 we
obtain

ra <M -b% = M -b.

Problem 4. For any n € N find upper bound for n—nested radical (contain n

radicals):
a.
\/22° + \/2:+ V22 + . V2t
b.
\/;L \/21 +1/22+ ..+ V2n;
c.
\ﬁw/2+\/3+...+\/ﬁ;
d.
\/1+\/3+\/5+...+\/2n~1;
e.
\/12+\/22+ V32 4+ .. 4+ Vn2
f,
\/1!>+\/2!+\/3!+...+\/H
Solution.
a.Since

n

s 2
an =22 I:Io(ﬁ)

then by corollary for k = n,a=1,b = /2 we obtain

\/22°+\/221+ 22 4 .+ 492t :\/§~\/1+1\/1+ I+.+V1<

< ﬁm{l#g} _ Y2V :

b. Since n < 2" n e NU {0} then 2 < 92"7! and, therefore,
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\/10+ \/21 +V/22+..+V2n < \/10+ \/22‘*‘ + \/222—1 +..+ V2T <

f 2
< 1+@<,/1+g<2

c.,d. Noting that n <2n -1 < 22" for any n € N we obtain

\/1+\/2+\/3+...~|—\/7_1<\/l+\/3+\/5+...+m<

< ¢10+\/21+ 24+ .+ Vol <o
\/12+\/22+\/32+...+\/n2<\/1+\/22+\/32+...+\/n2<
2 \/22"+\/221 +\/22"’+...+ g2

e.Since 2n —1<n? < 22" for any n € N (because n? < 2" for n > 4, implies
2" < 22" for any n € NU {0} and obviously n? < 22" for n = 1,2, 3) then

\/12+\/22+\/32+...+\/n2< \/22°+\/22‘+\/222+...+ - g

f.. First note that for any n € N holds inequality n! < 22"~ . Indeed,

| 2"
(n+1)! - 2

py _22,1—_1<=)n+1§22n_1

for any n € N. Then since 1! < 22" =2 and n! < 22" implies

(TL + 1)! n—1 22" n
(n+1)!=n!~T<22 ~22n_1=22
we conclude by Math Induction that n! < 22" ,meN.

Hence,

\/1!+\/2!+ V3!+---+\/ﬂ<\/1+\/221‘1+\/222“+...+\/22"—‘1<2.
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Problem 5. Let

3
an = A|1+ \3/2+ \3/3+ \/4+ ...+ ¥n,neN.
Prove that:

(1) ap11 <1+ ¥/2- aufor anyn € N

(2) Sequence (a,)y is convergent.

Solution.

1. Noting that k < 23" (k — 1) for any k € N\ {1} (equality
holds only if k = 2) we obtain

3 3
ad =1+1|2+ 3+34+...+3n+\3/n+1<
+

2. First we will prove that a, < 4for any n € N.
Indeed, a; =1 < ¥4 and

a2 =\1+V2< V1 e <3

For any n € N assuming a,, < v/4 we obtain

a2+1<1+\:’/§-an<1+\3/§-\3/1:3

and, therefore,

ant1 < V3 < V4.

233—2 L2+ 3 934-2 _3_*_“._’_2371—3 3/(n_1)+ \3/5:

3
=1+42+2¢/2+ 3+t -0+ ¥a=1+5.a,

37
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Thus, by Math Induction, a, < /4for any n € N and since an4+1 > a, for any
n € N we can conclude that sequence (an)y is convergent as increasing and
bounded from above.

Another solution of 1. Note that n < 23" * (n—1) for any n € N\ {1} (equality
holds only if n = 2)
For any n € N and k € N U {0} such that k < n let rq (n) := 0,and

Tk+1(n) = V/n—k+r(n),k € {0,1,2,..,n}.

Then a, =r, (n),¥n € N.

Also note that
Unt1 =Tpy1 (M +1) = /1471, (n+1).

Note that

rmn+1)=vVn+1< €/2S"+1‘2~(n+1—1):

= 2" Yn=2""r (n).

Let 1<k <n be any. Assuming r4 (n+ 1) < 23" "', (n) and since
n+1-—k<28" ! (n—k) for any k=0,1,...,n — 1(equality holds only if
k=n—1) we obtain

Teri(n+1)=Yn+l—k+r(n+1)< \3'/23"_'“1 (n—k)+23""* 'y (n) =

= 23n_k_2 Y (n - k) + Tk (n) = 23n_(k+1)_17‘k+1 (n) .

Thus, by Math Induction we proved ry, (n +1) < 28" "ri (n) for any 0 < k < n.
In particular for £ = n we have

Unt1 =Tpy1(n+1)=Y14+r, (n+1) <

< \3/1 + 28" M () = {/1 + 257, (n) = \3/1 + V2ay,.

Thus, a3, ; <1+ V/2-a, for any n € N.

2. Infinite nested square roots. As usually we start from concrete
problems which motivate consideration of situation represented in this problems in
general.

* ¢ Problem 1. Let
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Tn ::\'1+f1\/1+f2\/1+f3\/1+‘...fn\f1,

where f,, be n — th Fibonacci number defined by  fut+1 = fo+ fa—1,n € N and
fo = O, f1 = I

Prove that sequence (r,,) is convergent and find r := lim r,, that is find the value
n—o0

of infinite nested root

:\}1+f1\/1+f2\/1+f31/1+...+.fn\/T

Solution. First we will find the sum

fieq+fo @+t fu-g"

Let
Sn(q) : kaq
and -
5(0) =) fng"
Since
A (fre- %) = ferd® = frd® = g + fu_1gb ! — fig® =
=(@-1)¢"fe + " oo - ¢
then

n

1 @ = fig =3 (Fernd™ = frd?) = (a- DY f+ @S ¢ i =
k=1 k=1

k=1

n—1
=@-1S @+ ¢ fi=(a—-1)5.(q) + ¢ (qufk—q )
k=1

=(@-18 @)+ (Sn (@) — ¢ fn) = (¢* + ¢ = 1) S, () — ¢"+2 .
Hence,
(q2 +q-— 1) Sh (Q) = fn+1 . q”+1 — fig+ qn+2fn —

fig — g" 2 f, —g"tif, +1
l=gqg=¢g°

fn+1 i q"+1 s f1q+qn+2fn
¢* +q—1

Sn(q) = = Sn(g) =
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1 -1 -
Since lim {/f, = ¢ then radius of convergency S (q) equal i \/52 = —¢.
n—oo
=]
If |¢| < \/52 then

lim qn+2fn = lim qn+1fn+1 =0
n—00 n— oo

and, therefore,

for any such g.
In particular

S, (l) Dl d Fa' )2 = fo/2P¥2 < foqq ot g

2 2 T 1-1/2 - (1/2)°
fn fn+1
=2- 0 - <2

Note that

2n—1

where ¢, = f2" f3 fle (co=1)
Since by weighted AM-GM Inequality

. 2 n 1 1 i 1
e =[BT T <G At ht et o fa=5a (—)

1
and S, (§> <2

then ¢, < 22" and, therefore, sequence (ry)y is convergent by

Corollary 2.(Criteria of convergency of z, :\/al + Va2 + ... + /an).
Numerical experiments give us r; = 1.4142 7, = 1.5538,r3 = 1.6288, ...,

T15 = 1.753 1, T16 = 1. 755,7‘17 =1.7551
So, infinite nested root

1+f1\/1 +f2\/1+f3\/1+ e Ea
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define numerical constant which approximately equal 1. 755.
Remains the question: Can be this constant expressed via already well known
constants?

Problem 2 (Problem.(2062.Proposed by K.R.S. Sastry, Dodballapur,
India). Find a positive integer n so that both the continued roots

\/1995+ \/n+ V1995 + vn + ...

and

\/n+\/1995+\/n+\/1995+...

converge to positive integers.
We will return to solving this problem later, having first studied the behavior of the
sequence

—12
Tpi=,la+ .|+ a+...+\/.a+b+(2) a4

(n roots), n € N where a and b be positive real numbers.
The sequence (z,,)y can be defined recursively as follows:

1= Va,zy =\ a+ Vb, 2piy=1\/a+ Vb+z,,n€eN.
Let h(z) := \/G-F‘\/m. Then
Tnia = h(z,),n €N.
Since 27 < x5 < x3 and for any n € N, assuming Zo,_q < Zo, < Tan4+1 We obtain
h(Zon-1) < h(T2n) < h(Tant1) <= Toni1 < Tonss < Ton43.

Thus, by Math Induction proved that Tp < Tp41 for any n € N.

Let m := max {a,b} and m,, = \/m + \/m + v/m... + y/m(n roots).
& 1+vdm+1
2

Since 2, < my,¥n € N and m,, < then (z,,) is bounded from above

and, therefore, (z,)y is convergent as increasing sequence.
Let z:= lim z, > v/a. Then
n— o0

z= lim h(xn):h(li_)m xn) =h(z) &
n—oo

n—00
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2 1 b
a+ b+z:$<:>(x2—a)2:z+b<:>(m_g> ==+
x xr X

an2
Note that (m — —) strictly increase in (y/a,00) (because z — 2 50
T @
1 b
for z > y/a and increase in (0,00)) and = + —5 strictly decrease.
z T

a\? 1 b

Hence, since (:r - —) - (— + —2> is negative for z = y/a and it is positive for
x B

1

: . : a\? b . )
big enough positive z then equation (z = —) = — + — has a unique solution on
i x

(v/a, ). °

So, infinite nested root

\/a+\/b+\/a+vb+.... li_)m Tal=T}

where z is unique solution of equation z* — 2z%a — z 4+ a® — b= 0 in (y/a, ).
Together with infinite nested root

\/a+\/b+\/a+\/m

we also will consider nested root

\/b+ \/a+ Vb++va+ ..
which is defined as limit of sequence (y,) defined recursively by

y1 = Vb,y2 = \/b+Va,yns2 = \/b+ Va2t yn,neN.

But, some times more convenient simultaneous definition sequences
(), (yn) by the following system of recurrences

(R)
{xn+1:\/a+yn neN
Ynt1 = Vb + 1z

with initial conditions x; = /a and y; = V/b. As follows from the proved above

both sequences are convergent and,

therefore, z := lim z, > v/a,y := lim y, > Vb satisfies to system of equations
n—00 n—oo

(E)
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Now we came back to solution of the Problem 1.

Solution. Consider two sequences (z,), (y,) defined by the system of recurrences
(R) for a = 1995 and b = n.

Then
T = \/1995+ \/n—i— A/ 1995 + vVn + ...
and

y:\/n+\/1995+\/n+\/1995+...

are solution of the system

z =+/1995 + y = z? =1995+y
1 y=vn+az. Y¥=n+2z

Let y € N be such that 1995 + y is a perfect square, that is 1995 + y = (44 + t)?.
Then
=44+t y=21® — 1995 = (44 + )2 — 1995 = ¢ + 88t — 59
and "
n=y’—z=(t*+88t—59)" — (44+1t) =

= t* 4+ 1763 + 7626t — 10 385t + 3437

for any t € N
(because P (t) := t* 4+ 176t + 7626t> — 10 385t + 3437 > 1 for any ¢ € N).
Thus, for any t € N we have

(z,y,n) = (44 +t,t* + 88t — 59, P (t))

For example for t = 1 we obtain z = 45,y = 84,n = P (t) = 855.

Remark. More general nested root

B i | n+1 =
Zn = p+7' q+7"Jp++T‘\/p+q ( 2) (p Q)ynENv P7Q77'>0

can be reduced to nested root z,,considered above.
Indeed, since

B Tt E Tttt

Zn P 4., J P \/p/r2 +q/r*+ (=)™ (p/r* —q/r?)
' 2
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then denoting z,, := Z—;,azz %,b:%we obtain
r r r
b {1 (& B
Tni= |la+ b+\la+...+\/.a+ wal 2) (a ),nEN.

Problem 3. Explore convergence and find limit of sequence (a,):
a) apy2=V7—7T+an,n€Nand a; =7,a3 = V7 - VT;

b) ani2=+v19— 5+ an,n € Nand a; = v19,a3 = /19 — /5;
¢) ant2=+v9—+v23+a,,n €Nand a; =9,a: = V9 — v23.

And again, instead solving all these problems we will explore situation
in general, namely for given positive real numbers a, b such that a2 > b
we will consider two sequences (z,,) and (y,) defined recursively

Tny2 =Va—Vb+z,, n €N, where z; = \/a,zo = Va— Vb

and

Ynt2 = b+ Va—yn, n €N, where y; = Vb, yo = /b+ Va .

Both sequences can be defined by the following system of recurrences
of the first order:

(S)
{x"H: Va— U eN
Ynt+1 = Vb+zn
and 2, = /a,y; = \/5
Let a(t) :==va—1t,6(t) :=vb+tand ¢(t) :=a(B(t) = Va—Vb+t,
P(t):=08(a(t)=vb++va—t.

Then
(8”)

In lza(yn)
{ynilzﬁ(mn) ,neNu{0}

and zg = yo = 0.

and Tny2 = @ (Tn),Ynt2 = ¥ (Yn),n € N where 1 = \/a,z2 = Va— Vb
and yn+2:¢(yn)an€N, where y].:\/l_)’ Y2 = \/b+ \/6

Since ¢ (t) is defined and decrease on I := (0,a® — b) then for t € I

0=p(a®>—b) <p(t)<¢(0)=1a-Vb,
that is ¢ (I) = (O,\/a—\/l_)).

To provide existence of x,, for any n € N we should claim

p(I)cI < yJa—Vb<a®-b < 1< (a®-b) (a+\/5)
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and
1€l <= Va<ad®-b < b<a’-a.

Thus, for further we assume that positive a,b satisfies to inequalities
(1) 1< (a®-0) (a - \/l_)) and
(2) b<a®-/a.

Assuming that both sequences are convergent and denoting
z:= lim z,,y:= lim vy, we will consider system of equations
n—oo n—oo

fmst) = {1200

h(t)=t—pt)=t—1a—vb+t

Note that A (t) is increasing function on (0, +/a) and also note that a (t),9 (t) are
decreasing functions on (0, +/a) and J (t) is increasing function.

Since
h(0)=—¢(0)=—-va—-Vvb<0

h(va) =h(z1) =21 - p(21) =

Let

and

=zy—23>0

(because z1 > x,, for any n > 1 and in particular z; > x3)

then there is solution of equation z = ¢ (z) on (0, v/a) and this solution is unique
because h (z) := z — ¢ (x) is increasing function on

(0,va) = (zo, 1)

Denoting this solution via z, and denoting y, := 8 (xz+) we obtain two identities
T =@ (T4) , Ys = P (Ya) -

Note that zg < z. < z; implies
B(zo) < B(z4) <B(z1) <= 11 <ys <o

and
@ (T0) <@ (24) <p(z1) <= 3 <24 < 0.

Before moving further and taking in account that z; > 2 > x3 we will prove (using
Math Induction) that inequality z,, > z3 also holds for any n > 4.
We have

T1>T2>23 = p(71) < o (22) < p(23) =

T3 < Ty < s

and noting that ¢, (¢) := ¢ (¢ (t)) increase on I we obtain
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To < T2 => 2 (T0) < 2 (T2) <= z4 < g

and

To < T3 = @3 (.’L‘o) < 2 (133) — T4 < T7.

Hence, z4, x5, 26, 27 > 23 and for any n > 4 assuming ,, T,y1, Tpi2,Tnts > T3 We
obtain

Tita = 02 (Tk) >g02(x3)=m7>x3,k=n,n+1,n+2,n+3.

Thus, z, > z3 for any n € N with equality only if n = 3.

Also note that for any n € N obviously holds inequality

Yn=1b+zp_1> Vb= y1 with equality only if n = 1.

Since z3 < z, and for any n € N holds inequalities z3 < z,, and , ¥1 <y, and
y1 < z then

'-T121+2 o= le n lyn—f-l — Y _
Tpi2 + Ty T2 + Ty

|Tnt2 — T.| =

'xn_x*l '-’En—flf*| . lIL‘n—IE*|

T @z %) a1 F8) © dzam 1(Va=vbra) Vb

If
4 (\/a—\/b—i-a) Vb >1
then from

|Zn — 2.
4 (\/a— \/b+a) Vb
immediately follows that (z,) is convergent sequence.

Thus, if 4 (\/a —Vb+ a) vb > 1 then le Tn = T, and

nli’n;oyn :nli—{go \/b+xn_1 — \/b+z'* =y

lxn+2._ I*I <

Thus, proved the

Theorem. If two positive real numbers a, b satisfies to inequalities (1), (2) and
(3)
(a— \/b+a) b>1/16

then sequences (z,,) and (y,) defined recursively by system of recurrences (S) both
T=,/a—y

s are their

convergent and positive solution (z.,y.) of the system

limits, respectively.
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Consider application of the Theorem to Problem 3.
a) For a = b =7 we have

(=) (a+VB) 1= (72 =7) (7+V7) —1=

=42(7+2)—1=377,a®> - Va-b=7T>-V7-7>39

and
16(a,—\/b+a>b~1:16(7—\/ﬁ)7—1>16(7—4)7—1=335.
Also, since
T=4/T—Yy =2
y=vVi+z y=3
then

lim z, =2, lim y, = 3.
n—o00 n—oo

b) For a =19,b =5 inequalities (1) ,(2) obviously holds and

16(@—\/b+—a)b—1=16(19—\/ﬂ)7—1>16(19—5)7—1=1567.

Also, since
r=+19—-y I r=4
y=+5+=zx y=3
then

lim z, =4, lim y, = 3.
n— oo n—oo

c) For a =9,b= 23 inequalities (1) ,(2) obviously holds and
16 (o~ vbFa)b—1=16(9— vV23+9)23 1> 16(7~6)7~1 =111
Also, since
T=+9—-y Pk L =2
y=+v23+z y=295
then

lim z, =2, lim y, = 5.
n—o00 n—oo

Remark. Consider now for positive a,b,c following kind of nested roots

Ja—c\/b—%—c\/a—cwb-i—c\/ﬁ....
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Jb%—c\/a—c\/b—i—c a—- D oriosen

or more precisely two sequences (a,) and (b,) which defined by system of
recurrences:

()
an+1 Va —c¢b, neN
n+1 ﬂ + can
and a; = +/a,b; =
_" e e
2 :
Since (i) <= c C then using notations
TL
c c2 c
an b b
Tp=—,Yp = —,b = — we can reduce exploration of

c?
sequences (ay,) an (bn) sequences (z,) and (y,) defined by

(ii)
Intl =v0—Un N
yn+1:Vb+xn 3

and z1 = y/a,y; = Vb. and considered above.

Problem 4.(Ramanujan’s nested square roots.) Prove that

3:\/1+2\/1+3\/1+4\/1+....;

Problem 5. (CRUX#2222). Calculate the infinite nested root:

And we will solve them both as one problem in the following generalized
formulation:
Let b, = b+ an,n € NU{0} where a,b> 0 and let

£ \Jcﬂ + bo\/a2 + bl\/a2 +b2v/a2 + ...by_1VaZ,n e N

Prove that sequence (r,,) converge and find r := lim Tn, i.e. find the value
n—o00

of infinite nested root
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r= \la2+ bo\/a,2 + bl\/a2 +b2\/a2 + b1V a? + ...

Solution. Obvious that r,41 > r, for any n € N and we will prove that (r,) have
upper bound, more definitely, that r,, < b; for any n € N.
For any natural k and n denote

T (k) = \Ja2 + bk_l\/a2 + by \/a2 + bry1 \/a2 + ....bk+n_2\/a—2.

Then

s (k) = \/(12 + bk_l’r‘n~1 (k —+ 1)
Note, that for any n € N holds identity

1)

b2 = a? +by_1bnys.

Indeed,
b721 . a2 = (b’fl B a) (bn T a) = bn—1b71+1-

Using Math. Induction by n and identity (1) we will prove that rn (k) < by for any

natural n and k.

1. Base of induction. Let n = 1.Since bik+1 > by =b+a > a then

71 (k) = 4 a? + bk_l\/a‘ = \/(12 + bk_la < \/CLQ -+ bk—lbk-{-l = \/b»2 = bk

2. Step of induction. For any n € N, assuming that inequality r,, (m) < b,, holds
for any m € N, we obtain

Tn41 (k) = \/a2 + b_17mp (IC + 1) < \/0,2 + bk—lbk-f-l = by,.

Thus, in particularly we have r,, = r,, (1) < by and, therefore,

(rn)y is convergent sequence.

Moreover, we will prove that lim 7, (k) = by for any k € N.
n—oo

We have
b —r2 (k) _ a®+bp_1bps1 — (@ + bp_17nq (k+ 1))
bk —Tn (k) = = -
br + 70 (k‘) b + (k)
_ b1 (k1 — a1 (k4 1)) _ _ bi—1bk (bryo — rns (k +2)) =
b + T (k) (b + 71 (K)) (bkt1 + o (k + 1))

bk—lblc---blc+n—3 (bk+n—1 — 71 (k +n— 1)) _
(bk =irn (k)) (Tn—l (k + 1) + bk+1) (bk+n—2 + 7o (k‘ +n— 2))
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B br—1bk-..bktn—3 (0% + bpgn—2bktn — @ — bypn—20) _
(b +7n (k) (rn—1 (k4 1) + bey1) .. (brgn—2 + 72 (k + 1 — 2)) (bkgn—1 + 1 (k+n — 1))

br—1bk-.bktn—3 (bktn—2bk+n — brtn—2a) :
(b 4 7n (k) (rn—1 (K + 1) 4+ br41) .. (bkgn—2 + r2 (K + 1 — 2)) (byn—1 +71 (K +n—1))

br—1bk--brgn—3bk4n—2bktn—1
(b +7n (k) (rn—1 (k4 1) 4+ beg1) . (brgn—2 + 72 (K + 1 — 2)) (bgyn—1 +71 (K +n—1))

and since 7, (k) > a for any n,k € N then

br—1bk---brtn—3bkyn—2bptn—1
n (k) — b < =
rn (k) * (b + a) (bgy1 + @) ... (bgtn—2 + a) (byn—1 + a)

_ bi—1bkebppn—2bkin—1  br_1by

bet1bk42---bryn—1b0k4n brin

br— br—1b
Thus, 0 < 7y (k) — b < — 16 and lim ——1* =

bk+n n=%oo bk+n
implies

lim (r, (k) —bx) =0

n—oo
To be continued...
* Sign % before a problem means that it proposed by author of these notes.

E-mail: arkady.alt@gmail.com



